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Looking Into Saliency Model
via Space-Time Visualization
Haoran Liang, Ronghua Liang, Member, IEEE, and Guodao Sun

Abstract—We introduce a visual analytics method to analyze
eye-tracking data and saliency models for dynamic stimuli, such
as video or animated graphics. The focus lies on the analysis
of the different performance of saliency models in contrast to
human observers to identify trends in the general viewing behavior,
including time sequences of attentional synchrony and objects with
a strong attentional focus. By using a space-time cube visualization
in combination with clustering, the dynamic stimuli and associated
eye gazes as well as the attention maps from saliency models can be
analyzed in a static three-dimensional representation. We propose
algorithms to keep the appearance of the computer’s attention data
in line with the human’s eye-tracking data. The analytical process
is supported by multiple coordinated views that allow the user to
focus on different aspects of spatial and temporal information in
eye gaze data and saliency map. By comparing attention data from
both human and computer incorporated with the spatiotemporal
characteristics, we are able to find the different patterns within
human and computer algorithms. We list our key findings to help
developing better saliency detection algorithms.

Index Terms—Saliency model, spatiotemporal analysis,
visualization.

I. INTRODUCTION

HUMANS’ tremendous ability to rapidly direct gaze and
select the most relevant information from the visual world

around us have been intensely researched for years. Understand-
ing and simulating this attentional mechanism has both scientific
and economic impact, and are attracting increasing attention
both human vision and computational vision [1]–[3]. Besides
the traditional mathematical metrics to explore visual attention,
the development of visualization techniques nowadays allows
us to deeply look into the gap between human and computer,
which suggest a better design and improvement of artificial in-
telligence in the human cognitive domain.

The last decade has witnessed the rapid development of
saliency detection techniques. A number of saliency detection
models have been proposed to simulate human’s behavior and
explore the most attractive parts in static or dynamic stimulus.
Several metrics are being used to measure the performances
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of different models quantitatively. However, the rank of met-
ric scores of different saliency models does not intuitively tell
where the differences exist and what lead to them. Due to the
processing method and noise, generally people can barely judge
and select saliency map that has the highest metric score among
the results obtained by different saliency models. Therefore a
new way to explore and analyze the saliency models and eye-
tracking data is needed for a better and deeper understanding of
visual saliency domain and human cognitive processes.

The main focus in visual saliency research in the past lies
on the analysis of static stimuli such as images. For visualizing
fixations, numerous methods such as heat map and scan path are
widely used on data recorded for static stimuli. For the analysis
of dynamic stimuli such as video sequences, however, the
number of available visualization methods is very limited and
often, those techniques are not very effective because of: 1) In
general, the analysis of eye-tracking data from dynamic stimuli
can be achieved by watching the video with afore mentioned
methods, which is a time-consuming and exhausting task for the
analyst. 2) Statistical analysis of AOIs requires either a reliable
detection algorithm for locating, or tedious manual editing.

Future improvements in the field of computer vision may
provide techniques that can successfully identify the objects as
well as the regions of interest. However, human observation is
still required for semantic interpretation. Moreover, for analyst,
it would be more efficient to look at a representation of the whole
video at once and find the important clips that contain interesting
features without a sequential search through each frame.

The existing method of visualizing eye-tracking data only
consider human’s behavior while in the field of building
saliency detection model, a more important thing is to explore
the different observation patterns between human and computer
when being presented visual stimulus. In this paper, we
propose visualization designs for the purpose of analyzing
saliency models and eye-tracking data intuitively. The main
contributions are listed as follows:

1) We for the first time visualize both eye-tracking data from
human and saliency data from saliency detection model in
a single system for a better understanding and exploration
of the different observation patterns between human and
computer algorithm. (See Fig. 1)

2) Our approach can provide a spatial and temporal view
of visual attention data from both human and computer,
which allows a wide collection of different analysis tasks.

3) We list our key findings from our analysis on human
and computer’s attention data, suggesting better design
of saliency detection algorithm and showing deeper un-
derstanding of human observation pattern.
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Fig. 1. Visualization of area of interest from both human (green cubes) and saliency model (red cubes) for a video stimuli.

II. RELATED WORK

A. Visual Saliency

Recent years have witnessed the increasing interest in the
fields of both psychology and computer vision [2], [4]–[7].
Computational saliency models predict important locations of
a visual scene and focus limited resources to the identified re-
gions [1], [8]–[11]. The first saliency model was proposed by
Koch and Ullman [2] and later implemented by Itti et al. [12],
inspired by which, a number of algorithms have been devel-
oped to predict where humans look at in images along the same
line [4], [13]. In these models, low-level features such as color,
intensity and orientation were extracted and feature channels
were computed through center-surround filtering at multiple
spatial scales, followed by a feature integration step using lin-
ear mechanism to obtain the saliency map.On the basis of the
effectiveness of color, intensity and orientation proved by many
works in guiding visual search and attention-based computa-
tional model, various computational algorithms were proposed
to infer saliency of different feature channels. The information
maximization model [14] was based on the closely related quan-
tity of self-information using Independent Component Analysis
(ICA) decomposition [15]. Vasconcelos et al. demonstrated dis-
criminant saliency with the center-surround hypotheses [16].
Spectrum-based algorithms [17], [18] were also developed to
remove the redundant content of a visual scene to predict
saliency regions.

With the improved integration algorithms, these models per-
form better than the classic approach. A more recent problem
in the saliency community is the semantic gap between the
predictive power of computational saliency models and human
behavior. That is, pixel-level image attributes fail to encode ob-
ject and/or semantic information, which is many times more
important to saliency than pixel-level information. As recent
psychophysical [19], [20] and computational studies [21], [22]
suggest, visual attention is attracted, at least largely, by se-
mantically interesting regions or objects, especially in complex
visual scenes like web page and crowds [23], [24]. To fill the se-
mantic gap between computational saliency models and human
performance, specifically-trained object detectors have been in-
corporated into saliency models. For example, faces have been
shown to attract attention independent of tasks, and several re-
cent models [13], [21], [25], [26]. They combined face detection
as a separate visual cue with traditional low-level features to im-
prove saliency detection. Furthermore, Judd et al. [6] proposed
a Support Vector Machine (SVM) based learning approach to
linearly combine face, pedestrian and car detectors with low-
and mid-level features. The integration of multiple object detec-
tors in general boosts prediction performance, especially scenes
with the objects that have the detectors built and integrated.

Whereas only spatial features are available for the saliency de-
tection of still images, temporal features can be also exploited
for the spatiotemporal saliency detection of video sequences.
Some researchers have extended existing spatial saliency
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detection schemes, by considering the additional temporal di-
mension, to extract spatiotemporal saliency [27], [28].

B. Eye Tracking Data Visualization

The use of eye-tracking can provide valuable information to
understand the viewing behavior of human. Thus visualization
is a vital part in visual saliency research to not only show the
eye movement distribution, but also provide the probability to
explore the potential pattern within human’s viewing behav-
ior. Several works have measured the gaze overlaps of a video
that showed a surgical task to compare experts gaze with the
gaze of trainees [29]. Some examined similarities in the view-
ing behavior of several users to identify centers of interest in
movie scenes [30]. Marchant et al. [31] described an approach
to investigate the influence of directorial techniques on film
viewers experience. Smith and Henderson [32] compared the
degree of attentional synchrony between static and dynamic
scenes.

There exist a number of methods to visualize eye-tracking
data. Holmqvist et al. [33] provide a comprehensive guide to
methods and measures. Generally, heat maps [34]–[36] are used
to display aggregated eyetracking data. Tsang et al. [37] provide
a tree-like visualization for the exploration and comparison of
sequential gaze orderings. Raschke et al. [38] introduced the
parallel scan-path visualization to facilitate the comparison of
eye-tracking data between several users. In the context of visual
analytics, Andrienko et al. [39] provide a detailed methodol-
ogy for eye movement data. We adopt many of the standard
visualization methods in our work.

Space time cube is widely used in various fields of re-
search. Gatalsky et al. [40] describe its application to event
data in a geographical context. Chen et al. [41] and Botchen
et al. [42] represent video content in 3D to depict individual
objects and motion events. In the context of eye-tracking, Li
et al. [43] describe the use of the space-time cube to visualize
eye-trajectories. They focus on the analysis of static stimuli.
For the application to dynamic stimuli, Duchowski and Mc-
Cormick [44] describe a space-time representation of Volumes
Of Interest for aggregated eye movement trajectories. Kuno and
Daniel [45] extend the concept for dynamic stimuli and provide
different data representations in addition to the mentioned eye-
trajectories. Clustering of eye-tracking data is already used when
fixations are identified in raw data. Salvucci and Goldberg [46]
describe a taxonomy for different fixation identification algo-
rithms. For the clustering of multiple user gaze data, Sawahata
et al. [47] and Mital et al. [48] use a Gaussian Mixture Model.
Here in this work we use the mean-shift clustering approach
for gaze data, according to Santella and DeCarlo [49] because
it is robust to noise and does not require a preset number of
clusters.

However, past works only focus on human’s eye-tracking
data, none of them have combined attention data from both
human and computer algorithms (from saliency models) for
analysis, which is essential to explore the gap between human’s
observation pattern and saliency algorithm. Therefore, it is our
goal to bridge the two modalities of data and find the key dif-
ference and correlation.

III. DESIGN OVERVIEW

In this section, we introduce the design of our visual analy-
sis system including the multiple views of spatiotemporal eye-
tracking and predicted visual saliency data, the comparison part
that uses heat map to explore the differences in results from
saliency model and human. We also briefly introduce the visual
stimuli used in our analysis.

A. Interface

Fig. 2 shows a screenshot of our system. There are four main
components:

1) Visualization view: The visualization view consists of two
components. The main part is the interactively explorable
space-time cube that visualizes the areas of interest (AOI)
found in the visual attention data from human or com-
puter algorithm. The presented data are freely rotatable
and movable for investigation. Users can navigate through
the video by using the time-scroll which also indicates the
current frame being played. Each slice of the AOIs pre-
sented in the center of screen is selectable for the users to
quickly find a particular frame.

2) Data view: This component allow users to import data
from new saliency models. We take the predicted saliency
maps as the input and calculate all the needed data such
as the heat map, AOI and metric score. The data that are
enabled in the list will be presented in the visualization
view, so the users can navigate multiple models’ data in
one coordinate system to explore the difference and cor-
relation. Additionally, we allow users to modify color and
transparency to customize the 3-D view of eye-tracking
data.

3) Saliency map and heat map view: In this component we
show saliency maps and difference heat maps from the
given data. The definition and detail of 2-D and 3-D dif-
ference heat map are described in Section V-C.

4) Statistics view: This component lists all the metrics named
AUC, CC and NSS for the given stimuli. We also in-
clude the quantitative measure scores for main factors.
The definitions of the investigated factors are described in
Section VI-A.

B. Stimuli

We use two databases in our work, the first one is a public
database named Coutrot Database [50], another one is synthe-
sized using a collection of static images.

1) Coutrot Database: The visual material consisted of 15
one-shot conversation scenes extracted from French Hollywood
like movies. Videos featured two to four conversation partners
embedded in a natural environment. Videos lasted from 12 to
30s, had a resolution of 720 × 576, and a frame rate of 25
frames per second. The stimuli features conversation partners
embedded in complex scenes (cafe, streets, corridor, office, etc.)
involving different moving objects (glasses, spoons, cigarettes,
papers, etc.). The database also contains auditory material con-
sisted of 45 monophonic soundtracks: a first set of 15 sound-
tracks extracted from the conversation scenes (dialogues), a



2274 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 11, NOVEMBER 2016

Fig. 2. Overview of the design components.

second set of 15 soundtracks made up of noises from moving
objects (short abrupt onsets, e.g., falling cutlery), and a third set
of 15 soundtracks extracted from landscape scenes (continuous
auditory stream, e.g., wind blowing).

There are four versions of eye-tracking data that are recorded
using the same video with different soundtracks. In order to
focus more on the visual features, we only use the eye-tracking
data recorded using the original soundtrack in this work.

2) Synthesized Stimuli: We collected a total of 300 natural
images, representing a variety of common scene from Flickr.
Each time, we randomly select 5 images to synthesize a video
that lasts for 15 s, each image is presented for 2.5 s followed
by a gradient transition (0.5 s) to the next one, forming 10 clips
of synthesized videos. Fifteen students (8 male and 7 female,
between the ages of 18 and 25) with corrected or uncorrected
normal eyesight free-viewed the full set of videos. These videos
were presented on a 22-inch LCD monitor (placed 57 cm from
the subjects), and eye movements of the subjects were recorded
using an Eyelink 1000 (SR Research, Os-goode, Canada) eye
tracker, at a sample rate of 1000Hz. The screen resolution was
set to 1680 × 1050, and the images were scaled to occupy
the full screen height when presented on the display. There-
fore, the visual angle of the stimuli was about 38.8◦ × 29.1◦,
and each degree of visual angle contained about 26 pixels in
the image.

IV. SALIENCY VISUALIZATION

In our visual analysis approach, we included established visu-
alization methods for eye-tracking data, namely Heat Map and
Areas of Interest (AOI). The two methods are commonly known
and used by researchers, which allows for an easy adoption of
design. Moreover, the methods can express visual attention data

Fig. 3. Areas of interest obtained by human (left) and saliency model (right).
Generally, AOI predicted by accurate saliency model will contain human’s AOI
to a certain extent.

intuitively, making it more understandable in a wide collection
of different analysis tasks.

A. Heat Map

Heat map is the most common method in visual saliency
research to provide a qualitative view of observers’ gaze dis-
tribution. It convolves fixation map with a Gaussian, i.e., for
each fixation, it adds a 2D-Gaussian centered at that location.
Especially for static stimuli, given the full set of fixations, heat
map could completely express the aggregation of gaze positions
over the observation time. The principle of static heat maps can
be applied to dynamic stimuli to summarize the dtribution of at-
tention, but the duration for observing each frame is quite short,
leaving no more than one fixation for that frame (See Fig. 3).
Most current methods integrate static saliency approaches with
spatial and temporal factors to predict video saliency, result-
ing in highlighting multiple regions in saliency maps, which
makes it ambiguous for deciding the exact region being fixated
by observers. This requires a preprocess of saliency map before
comparing with human fixation.
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B. Areas of Interest

Fixations usually cluster on salient visual references (Fig. 7),
which denote regions that might be of interest for viewers and
analyst. Common eye movement metrics such as fixations per
AOI or percentage of participants fixating an AOI can be used to
retrieve objective information. Given eye-tracking data of video
material, unknown AOI can be found by applying clustering
algorithms. In our visual analysis approach, we find AOIs based
on saliency maps. The principle to extract AOI directly from
saliency map can be achieved by selecting salient regions that
are highlighted after utilizing saliency prediction models. The
selection detail is described in Section V-D.

C. Space Time Cube Visualization of Dynamic Saliency
Changes

The areas of Interest view and heat map view only present a
static display of the predicted saliency map as well as the dif-
ference between the predicted saliency map and ground truth.
However, if a user needs to examine the saliency map of dif-
ferent frames or the dynamic difference between the predicted
ones and ground truth, he or she may need to examine different
views one by one, and try to correlate them together. This may
lead to cognitive burden, and low efficiency of task completion.
In order to overcome the issues above, we employ space-time
cube visualization to present and analyze the overall dynamic
changes of the saliency map as well as the comparison between
them. Space-time cube is commonly used to analyze tempo-
ral dynamic, space related data including eye-tracking data. In
Fig. 1, cubes at each time step represent the bounding box of
salient area with red encoding the predict ones and green en-
coding the ground truth by human. The cubes are stacked along
the x-axis to reveal the overall dynamic changes and difference
of the saliency map. The cubes representing predicted ones and
ground truth at a same time are overlapped with alpha blending
to ensure both of them could be perceived visually.

The space-time cube visualization supports basic interactions
including zooming and rotating, and advanced interactions in-
cluding linking with heat maps view and area of interest. Users
could click any single frame to examine the detailed difference
of the predict saliency map and the ground truth.

V. DATA ANALYSIS

In this section, we first briefly list the saliency models we use
in our visualization system. Secondly, we introduce the process
to generate the 2-D and 3-D difference heat map that intuitively
show where the differences exist. Lastly, we propose our method
to locate AOI when given a static saliency map.

A. Salieny Models

We select six state-of-the-art saliency models that are purely
bottom-up in our work, namely the Adaptive Whitening
Saliency (AWS) [51], the Graph Based Visual Saliency (GBVS)
[52], the Image Signature (SIG) [17], the Saliency Using Natu-
ral Statistics (SUN) [53], Spatiotemporal Saliency Detection
for Video Sequences Based on Random Walk With Restart

Fig. 4. Illustration of the difference between predicted saliency map and
ground truth. (a) Saliency map obtained by adaptive whitening saliency (AWS).
(b) Ground truth by human. (c) The 2D view of the difference heat map. (d) The
3D view of the difference heat map.

(RWRV) [27], Visual Saliency Detection by Self-Resemblance,
(SR) [28]. Among them, the first four models were primarily
developed for static stimuli while the last two were for video
data by taking spatial and temporal factors into consideration.
To apply static saliency model for video data, we simply input
each frame independently to generate saliency map.

B. Map Preprocessing

The saliency maps obtained by different models are firstly
blurred using Gaussian with a same standard deviation σ that
varies from 0 to 10. After that we convert saliency maps to
binary images with a threshold δ, i.e., we only keep the pixels
that have salient values larger than δ and set the rest to 0. Let p
be the pixel value in the saliency map, the above approach can
be written as

B(p) =

{
1, G(p) � δ

0, G(p) < δ
(1)

where G(·) denotes the Gaussian function. In our work, we set
δ to 0.8 as it satisfyingly filters the non-salient parts of image
and only keeps no more than 3 regions for each frame.

C. Difference Heat Map

Traditional saliency prediction methods use metrics such
as shuffled Area Under Curve (sAUC), Normalized Scanpath
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Saliency (NSS) and Linear Correlation Coefficient (CC) to
quantitatively evaluation the performance. Additionally, heat
maps are usually overlaid on top of the original stimulus or dis-
played standalone for viewers to compare by themselves. Here
in our visual analysis approach, we propose using the difference
heat map to intuitively show the way human and saliency model
observe as well as the pattern in finding salient regions.

A slice inside in Fig. 4 represents the current video frame. Its
corresponding saliency maps by human [Fig. 4(b)] and saliency
model [Fig. 4(a)] are shown alongside. Its position is freely
rotatable and movable for the users to investigate data around
it. Fig. 4(c) is obtained from the subtraction of Fig. 4(a) from
4(b). To ensure the two maps have the same data range, they are
normalized by the maximum value inside the map. Let p be the
set of pixel value in saliency map, g(p) and m(p) be the saliency
maps for human and saliency model respectively. The process
of generating difference heat map h(p) can be written as

h(p) =
g(p)

max(g(p))
− m(p)

max(m(p))
.

We then use each pixel value in h(p) as the depth to plot col-
ored parametric mesh in 3-D space [Fig. 4(d)]. We can conclude
that the region in red and blue indicate the false positives and
false negatives respectively.

D. Visual Attention Cluster Analysis

Since the eye-tracking data from human and saliency predic-
tion results from saliency models are in different modalities, it
is required to locate the AOIs using different methods.

1) Eye-Tracking Data: For eye-tracking data, the common
practice to find areas that attract attention is using cluster-
ing algorithms. Those algorithms should satisfy one basic
requirement: the unknown number of clusters. Due to the un-
predictability of salient features such as varying color, moving
object, the number of clusters can not be pre-defined properly.
Even if these factors are known, the number of participants and
length of stimulus will also become influence factors. In addi-
tion, the algorithms are better to be parameterizable in order to
define the granularity of the clusters. In this work, we utilize
Mean Shift that is widely used in the field of machine learning
and computer vision to cluster eye-tracking data for it ideally
fits the requirement.

The results on coutrot database show high consistency of
human’s behavior towards the same stimuli, resulting in one
AOI for each stimuli.

2) Predicted Saliency Map: Oppositely, saliency maps
obtained by saliency models usually contain three or more high-
lighted regions, part of which is redundant and makes it ambigu-
ous for deciding the main attractive region in a particular frame.
As described in Section V-B, we have pre-processed saliency
maps using (1), the remaining of image content are several con-
nected components, which are shown in Fig. 5. We then select
n components sorted by area as the representative AOIs. In our
case, we set n to 3.

We observe that in most case, the largest component in one
frame fits well with human’s attention data, yet we still need
to fine-tune the selection strategy because saliency models to

Fig. 5. Process of finding AOIs from predicted saliency map. The connected
components are labeled in terms of area. Note that the maximum number of
AOI n is set to three in this work.

TABLE I
QUANTITATIVE EVALUATION FOR THE SELECTED SALIENCY MODEL

Database Coutrot [50] Synthesized Video

Metric AUC CC NSS AUC CC NSS

GBVS [52] 0.71 0.22 1.93 0.66 0.15 1.43
RWRV [27] 0.58 0.15 1.36 0.63 0.12 1.40
SR [28] 0.51 0.13 0.89 0.51 0.14 0.88
SIG [17] 0.51 0.02 0.22 0.54 0.10 0.51
SUN [53] 0.52 0.09 0.94 0.54 0.12 1.01
AWS [51] 0.67 0.20 1.74 0.63 0.18 1.63

Fig. 6. Three factors that are focused on during the analysis.

TABLE II
QUANTITATIVE MEASURE FOR THE SELECTED SALIENCY MODEL

Factor Stability Overlap Consistency

GBVS [52] 0.14 0.33 0.04
RWRV [27] 0.43 0.18 0.18
SR [28] 0.44 0.20 0.09
SIG [17] 0.44 0.18 0.24
SUN [53] 0.29 0.24 0.05
AWS [51] 0.17 0.33 0.05

The three factors are stability, overlap and consistency.

some extent find important regions that contain salient features
without telling the exact one being fixated in each frame. For
each frame, we calculate each selected connected component’s
distance to human’s AOI that discovered using Mean Shift, the
closest connected component among the three will be selected.
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Fig. 7. 3D space-time visualization of eye-tracking data. (a) Eye-tracking data. (b) Predicted eye movement using AWS. (c) Predicted eye movement using
RWRV. (d) Predicted eye movement using SR

VI. CASE STUDY

We first list the quantitative results for each saliency mod-
els in Table. I. From the performance we can categorize the
saliency models into three levels: high (GBVS [52], AWS [51]),
medium (RWRV [27]) and low (SIG [17],SUN [53], SR [28]).
Space-time cube visualization could help users evaluate the per-
formance of different saliency prediction algorithms. Next we
look deeply into the visualized cubes to explore the factor that
leads to the difference.

A. Investigation

Three main factors are taken into consideration in our anal-
ysis. To better understand the data distribution, we also define
quantitative measures for the three factors.

1) Stability: denotes the frequency of switching AOI. As
shown in Fig. 6(a), the fixations change rapidly during the
time segments in red circle yet remain still in blue circle.
This could remind us of the change of salient features in
the particular frames. The standard deviation of distance
of adjacent AOIs in this case can be used to measure
stability quantitatively.

2) Overlap: is used to observe the similarity of gaze distribu-
tion from human and computer algorithms. It is apparently
that better results from saliency model will to the most ex-
tent overlap with eye-tracking data. The time segments in

which the data do not overlap (See example in Fig. 6(b))
are valuable for investigation. Overlap can be measured
by the size of overlapped region.

3) Consistency: refers to the size of AOI over the obser-
vation time. The AOIs obtained from eye-tracking data
are not only consistent in location, but also in size. There-
fore we could look into the particular frames [e.g., the
time segments in red and blue circles in Fig. 6(c)] to find
the reasons that lead to inconsistency. Here the standard
deviation of size of AOI is used to measure Consistency
of given computer model.

Particularly, the definitions of quantitative measure for Sta-
bility (S), Overlap (O), Consistency (C) of a given saliency
model (model) can be written as

S(model) = std({d1 , d2 , ..., dn−1})

O(model) =
1
n

n∑
1

ai

C(model) = std({s1 , s2 , ..., sn})

where std(·) refers to standard deviation, n is the number of
frame, di is the euclidean distance between the ith and i + 1th
AOIs from one model (the anchor is set to the centre of AOI),
ai represents the size of overlapped region of AOIs from human
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Fig. 8. Visualization of the main false detection of saliency model. (a) GBVS (red) versus human (green). (b) RWRV (red) versus human (green).

and computer model in ith frame, si is the size of AOI in ith
frame.

We test the three measures on all the stimulus in both
databases and report the average performances in Table II. Note
that we have normalized the distance and size of AOI before
calculate the measures for three factors, i.e., distance is nor-
malized by the diagonal of video frame and size by the size of
video frame. From the result we can see that the rank of quanti-
tative measures approximately matches that of metric scores in
Table I. However, the performance of a saliency model could not
be directly judged by these three scores. For instance, let’s as-
sume di will always be the same but very large, the stability and
size scores will approximate zero, but apparently, such model is
not stable at all. Therefore, the visualization view should also
be taken into consideration when measuring models.

B. Observation

The key observations are summarized below:
Stability is important in saliency prediction: Fig. 7 shows

three space-time cube views for human, AWS, RWRV and SR.
From top to bottom, they are sorted in descending order by the
metric scores in Table. I. We can see that human’s eye movement
is more smooth and continuous than those obtained by saliency
models. The participants usually gaze on one visual reference
for more than one second before turning to another one. In
contrast, eye movements predicted by saliency models rapidly
jump among several regions.

Besides the frequency of switching where to look, the object
that is fixated generally locates closely to the former one. This is
because that people tend to focus on the regions that contain or
possibly contain salient objects such as the street and vanishing
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Fig. 9. Additional visualization of saliency prediction (orange) by saliency models compared with human’s eye-tracking data (green) (a) AWS versus human.
(b) SUN versus human. (c) SIG versus human. (d) SR versus human.

point. People’s top-down knowledges in this case affect the
behaviors a lot as they try to find attractive things based on the
experience in daily life.

Bottom-up feature should be addressed properly: Fig. 8
shows two space-time cube views, with red cubes representing
the saliency map predicted by saliency algorithm (GBVS) and
the green cubes representing the human eye-tracking data. The
size of cube area at each time frame encodes the size of AOI
within the saliency map.

We can immediately find that the red and green cube overlap
with each other within most of the time frames, which means
the GBVS algorithm could predict salient area accurately and
effectively in most video frames. Similar patterns are also found
under the experiment of AWS algorithm [see Fig. 9(a)]. More-
over, comparing the space-time cubes side by side can help
identify the potential common problems existed in the predic-
tion algorithm. For example, the cubes in time segment [blue
box on the left in Fig. 8(a)] reveals that both GBVS and AWS
fail to predict the right salient area, while the area predicted by
the two algorithm are almost the same. This pattern provides a
visual hint for further examination of the video frames at that
time segments and exploration of the reasons why the predicted
ones do not match eye-tracking data.

In our evaluation, interestingly, we find that the two se-
lected approaches for dynamic stimuli named RWRV and SR
are beaten by traditional static saliency model, which shows
the importance of bottom-up feature in saliency prediction. We
pick out the time segments that the AOIs from human and com-
puter do not overlap with each other for further analysis. The
green and red boxes in Fig. 8 refer to AOIs from eye-tracking
data and saliency algorithms respectively. In Fig. 8(a), human
focus on the rider while the bottom-up saliency model regards
the car as the most attractive thing. This suggests the neces-
sity to detect high-level features such as human before extract-
ing low-level features. This can also be observed in Fig. 8(b),
where we can see the false detection of RWRV mainly lie in
excessive emphasizing of low-level features such as color and
boundary.

The size of salient regions should be limited: We qualitatively
show more visualizations for the rest of the saliency models in
Fig. 9. Except for AWS, the last three models barely matches
the pattern people observe.

As mentioned above, the AOIs obtained from eye-tracking
data are not only consistent in location, but also in size. More-
over, the size of region that is being fixated by human is not quite
large generally, which suggests a further selection strategy after
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TABLE III
USABILITY OF OUR VISUALIZATION DESIGN IN ANALYSIS TASKS

Tasks

1 .Explore the attractive features or AOI in a video.
2. Find the sequence of objects that have been focused.
3. Explore the duration of fixating on each object.
4. Gain a spatiotemporal view of the whole dynamic data.
5. Evaluate the synchrony of attention from human and computer.
6. Explore the weakness and strength of saliency models in prediction.
7. Explore the role of features from different levels in saliency prediction.

obtaining big areas containing salient features. For instance, a
person is salient does not mean people will look at the whole
body because the most attractive region is the face.

Our findings are valuable to be considered in building new
saliency models and we think they are also helpful to be utilized
for improving the existing saliency models.

C. User Feedback

Two experts (EA and EB) in visual saliency studies from two
universities were asked to work on this study, identify research
problems, and collect design requirements. The system was it-
eratively improved throughout the frequent meetings with the
domain experts. The case studies were conducted when the sys-
tem was ready. The experts provided interesting insights into
the research findings. Their feedback is summarized as follows:

Visualization Design: The visual design of our system was
received very well by both EA and EB. They agreed that the tool
is engaging, and easy to use, and were very impressed by the
interactive features. EA said that the 3-D view of eye-tracking
data distribution is intuitive and helpful for data analysis and
exploration. He mentioned that the data trace showing both
human and computer model helps his exploration of attractive
features and understanding of the way people observe as well as
how it differs from computer algorithm. He also added that the
idea to show the different traces of eye-tracking data of a whole
video at once instead of watching and searching through each
frame is wonderful and saves time. EB was impressed by the
visualization view of our tool. He said that the design “allows
me to easily switch to frames of interests to look for the factors
that affect the pattern people and computer behave and lead to
the difference. However, despite the experts appreciation of the
overall design, they found the difference heat map difficult to
understand because of the unaligned direction when compared
with the data in 3-D view.

Usability: Both users confirmed the usefulness and effective-
ness of the system and wanted to use the system in teaching
and research. EA said that “The system is a great tool. I can
use it to quickly find interesting frames that contain important
features judged by both human and computer model”. He espe-
cially liked the selectable 3-D trace, which allows him to select
and see the exact image and saliency easily. EB noted that the
system is not only useful for data analysis but also helpful for
easily communicating their findings to colleagues or a wider
audience. The usability in analysis tasks summarized by users
are listed in Table III.

Limitation: Both users complained about the occlusions prob-
lem. They said that in our design, the opacity is too high, making
it hard to observe from the occlusion. However, when opacity
is set to lower than 0.6, the surfaces of traces are frequently
mixed with each other which makes it hard to judge the original
distribution of data. A more sophisticated way of visualization
design for effective observation could be a possible avenue for
future work.

Suggestion: The users provided valuable suggestions to im-
prove the design. EA suggested the 2D projections be added to
3-D view of data to reduce the problems caused by 3-D occlu-
sions. EB suggested that the design be kept as simple as possible
so that common users can handle well to do researches in visual
saliency. He also added that we show the corresponding frame
beside or overlaid on difference heat map to make it easier for
user to understand.

VII. CONCLUSION

The existing method of visualizing eye-tracking data only
consider human’s behavior while in the field of building saliency
detection model, a more important thing is to explore the dif-
ferent observation pattern between human and computer when
being presented visual stimulus. In this paper, we propose visu-
alization designs for the purpose of analyzing saliency models
and eye-tracking data intuitively. We provide spatial and tem-
poral views of visual attention data from both human and com-
puter, which allows a wide collection of different analysis tasks.
Lastly, we list our key findings from our analysis on human and
computer’s attention data to reveal the importance of stability
and low-level feature, suggesting better design of saliency de-
tection algorithm and showing deeper understanding of human
observation pattern.

For future work, we plan to annotate the whole database we
use in order to track objects for a more deeper analysis. Further,
the findings from our analysis allow us to build saliency model
that combines the key factors for better performance.
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[43] X. Li, A. Çöltekin, and M.-J. Kraak, “Visual exploration of eye movement
data using the space-time-cube,” in Proc. Int. Conf. Geographic Inform.
Sci., 2010, pp. 295–309.

[44] A. T. Duchowski and B. H. McCormick, “Gaze-contingent video resolu-
tion degradation,” Proc. SPIE, vol. 3299, pp. 318–329, 1998.

[45] K. Kurzhals and D. Weiskopf, “Space-time visual analytics of eye-tracking
data for dynamic stimuli,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, pp. 2129–2138, Dec. 2013.

[46] J. C. Roberts, “State of the art: Coordinated & multiple views in ex-
ploratory visualization,” in Proc. 5th Int. Conf. Coordinated Multiple Views
Explor. Vis., 2007, 2007, pp. 61–71.

[47] Y. Sawahata et al., “Determining comprehension and quality of tv
programs using eye-gaze tracking,” Pattern Recog., vol. 41, no. 5,
pp. 1610–1626, 2008.

[48] P. K. Mital, T. J. Smith, R. L. Hill, and J. M. Henderson, “Clustering
of gaze during dynamic scene viewing is predicted by motion,” Cogn.
Comput., vol. 3, no. 1, pp. 5–24, 2011.

[49] A. Santella and D. DeCarlo, “Robust clustering of eye movement record-
ings for quantification of visual interest,” in Proc. 2004 Symp. Eye Tracking
Res. Appl., 2004, pp. 27–34.

[50] A. Coutrot and N. Guyader, “How saliency, faces, and sound influence
gaze in dynamic social scenesshort title?” J. Vis., vol. 14, no. 8, pp. 5–5,
2014.

[51] A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil, “Saliency
from hierarchical adaptation through decorrelation and variance normal-
ization,” Image Vis. Comput., vol. 30, no. 1, pp. 51–64, 2012.

[52] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Proc.
Adv. Neural Inform. Process. Syst., 2006, pp. 545–552.

[53] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “Sun: A
Bayesian framework for saliency using natural statistics,” J. Vis., vol. 8,
no. 7, pp. 621–640, 2008.

Haoran Liang received the B.Eng. degree in com-
puter science from Zhejiang University of Technol-
ogy, Hangzhou, China, in 2011, where he is currently
is working toward the Ph.D. degree.

His research interests include computer vision,
machine learning, and visualization.

Ronghua Liang (M’06) received the B.Sc. degree
from Hangdian University, Hangzhou, China, in
1996, and the Ph.D. degree in computer science from
Zhejiang University, Hangzhou, China, in 2003.

He worked as a Research Fellow with the Uni-
versity of Bedfordshire, Bedfordshire, U.K., from
April 2004 to July 2005, and as a Visiting Scholar at
the University of California, Davis, CA, USA, from
March 2010 to March 2011. He is currently a Pro-
fessor of computer science and the Executive Dean
of College of Information Engineering with Zhejiang

University of Technology. His research interests include computer vision, in-
formation visualization, and medical visualization.

Guodao Sun received the B.Sc. degree in computer
science and technology and the Ph.D. degree in con-
trol science and engineering from Zhejiang Univer-
sity of Technology, Hangzhou, China, in 2010 and
2015, respectively.

He is an Assistant Professor with the College of In-
formation Engineering, Zhejiang University of Tech-
nology. His main research interests include urban
visualization and visual analytics of social media.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


